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Use of Historical Controls for Animal
Experiments
by Takashi Yanagawa* and David G. Hoelt

Statistical methods for the use of historical control data in testing for a trend in proportions in carcin-
ogenicity rodent bioassays are reviewed. Asymptotic properties of the Hoel-Yanagawa exact conditional
tests are developed and compared with the Tarone test. It is indicated that the Hoel-Yanagawa test is
more powerful than the Tarone test. These tests depend on the beta-binomial parameters which are
estimated from historical data. The goodness of fit of beta-binomial distributions to historical data is
illustrated by application to the historical control database in the National Toxicology Program. Finally,
sensitivities of the exact conditional test to the historical information is discussed and a conservative use
of the test is considered.

Introduction
To begin, we consider Table 1, which summarizes the

data from an experiment involving r + 1 groups of
animals. One group serves as a control group and the
remaining r groups are administered a test compound
at increasing dose levels, d1 < d2 < ... < dr. The control
group is associated with i = 0 so that do = 0. Let ni
denote'the number of animals in the i-th group. We
assume for i = 0, 1, . . ., r that at experimental dose
di there are xi animals with tumors observed which are
binomially distributed with parameters pi and ni. We
define p = po.
To test an increase in the proportions pi= xilni with

increasing dose level, Cochran (1) and Armitage (2) sug-
gested the test statistic

r

xdi

x2 =

r 2

- p2nnidi

{pq4inidi2- (inidif/nh}

where p = x/n and q = 1 - p. This statistic is distributed
asymptotically as a chi-squared random variable with
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Table 1. Summary data from an animal carcinogenesis bioassay.

Dose level
0 d, d2 ... dr Total

Animals with
tumor X0 Xl X2 ... Xr x

Animals without
tumor no- xfni - xi n2 -X2 ... nr-Xr n-x

Sample size nO n, n2 ... n, n

one degree of freedom if there are no differences in the
probability pi of developing a tumor among the r+ 1
groups. Cox (3) showed that this statistic gives the uni-
formly most powerful unbiased test against logistic al-
ternatives and Tarone and Gart (4) showed that this
statistic is asymptotically locally optimum against any
alternative which can be expressed as a smooth increas-
ing function of dose.

In most carcinogenicity rodent bioassays, we are usu-
ally dealing with three experimental groups of animals
which consist of a control group, a low dose and a high
dose group each with 50 animals. The probability of an
animal with a specific type of tumor in the control group
ranges from less than 1% to 20% depending upon the
type of tumor.
When the Cochran-Armitage test is applied to these

bioassays, two problems arise: the problem of false pos-
itives (Type I error) and that of false negatives (Type
II error). For the first problem, Portier and Hoel (5)
showed that when the Cochran-Armitage test is used
the false positives can be considerable, depending mark-
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Table 2. False negative rate (Type II error) of the Cochran-Armitage test at 5% nominal level,
r = 2, no = ni = n2 = 50, and di = 1, d2 = 2.

1 2 3 4 5 6 7 8
p 0.01 0.01 0.01 0.05 0.05 0.05 0.10 0.10
Pi 0.015 0.022 0.049 0.073 0.106 0.212 0.143 0.201
P2 0.022 0.049 0.360 0.106 0.212 0.580 0.201 0.363
False negative ratea 0.89 0.80 0.51 0.77 0.44 0.03 0.66 0.21
aComputed from the asymptotic power of the Cochran-Armitage test.

edly on bioassay design. This problem can be overcome
by the use ofthe exact trend test which extends Fisher's
exact test for a 2 x 2 table. Yanagawa, Hoel, and Brooks
(6) show that the computing time for the exact trend
test is fairly short. However, whether we use the Coch-
ran-Armitage test or the exact trend test, the second
problem, that is the problem of the false negatives, still
remains. Table 2 shows approximate false negative
rates of the trend test at nominal 5% significance level
for several values of (P,P1,P2). The values in the table
are approximated by means of the asymptotic power of
the Cochran-Armitage test. The table shows that the
false negative rates are fairly large. For example, when
p = 0.01, P, = 0.05, and P2 = 0.36, the table reveals
that approximately one-half the time a carcinogen is
tested and found to be noncarcinogenic by the trend
tests.

Clearly, the need is to increase the power of the trend
tests so as to decrease the false negative rate. Now,
the National Cancer Institute (NCI) and the National
Toxicology Program (NTP), USA, have generated
nearly 300 Technical Reports summarizing the results
of carcinogenicity rodent bioassays for a wide variety
of chemicals. For each of these studies detailed infor-
mation of neoplastic and nonneoplastic lesions for in-
dividual animals have been computerized and stored on
the Carcinogenesis Bioassay Data System. This repli-
cation of experiments leads to a general knowledge by
toxicologists of what outcomes are typically observed
in an experimental control group.
The purpose of this paper is to review statistical

methods for the use of historical control data in testing
for a trend in proportions in carcinogenicity rodent
bioassays. Asymptotic properties of the Hoel-Yana-
gawa (7) exact conditional tests are developed. The
asymptotic conditional test is compared with the Tarone
(8) test and shown to have higher power than the latter.
The goodness of fit of beta-binomial distributions to his-
torical data which is the basic assumption for the Hoel-
Yanagawa and Tarone tests is examined by using the
historical control database established by the NTP. Fi-
nally, sensitivities of the exact conditional test to the
historical information is considered and a conservative
use of the test is discussed.

Literature Review
Several authors have developed methods for incor-

porating historical information into statistical tests of

hypothesis. Tarone (8) assumes a logistic dose-response
model with a beta prior distribution for the probability
of an animal with a tumor in the control group. Using
likelihood methods an asymptotic test is developed for
determining the existence of a positive dose-response.
The test functionally is a modification of the Cochran-
Armitage test. Dempster, Syelwyn, and Weeks (9) as-
sume that the logic of the historical rates are normally
distributed and apply Bayesian methods to obtain a p-
value of the posterior probability of a positive dose-
response. The authors indicate that their approach is
asymptotically equivalent to the large sample test of
Tarone. Hoel (10) proposes a conditional two-sample
test. His idea is more thoroughly discussed in Hoel and
Yanagawa (7). The tests developed are exact tests
rather than the asymptotic procedures of the previous
authors. They assume, as did Tarone (8), that the his-
torical rates are distributed as beta-binomial and con-
struct tests conditional on the number of outcomes in
the control group.

In all of this work, the parameters of the beta-binom-
ial distribution which must be estimated from the his-
torical control data are assumed to be known. Consid-
ering the conditional test for logistic response by Hoel
and Yanagawa (7), Yanagawa, Hoel, and Brooks (6)
discuss the sensitivity of the test to this source of var-
iability and develop a conservative use of the test. Hase-
man, Huff, and Boorman (11) have reviewed the data
stored in the Carcinogenesis Bioassay Data System and
discuss those issues which must be adequately ad-
dressed before historical control data can be used in a
formal testing framework.

Formulation
We assume for i = 0, 1, . . ., r that at experimental

dose di there are Xi animals with observed tumors which
are assumed to be binomially distributed with param-
eters pi and ni. We formulate the problem of testing for
a trend in proportions following Tarone and Gart (4) by
assuming that:

pi = H(a + kdi)

where H is a twice differentiable and monotone increas-
ing function over [O,x]. The statistical test of hypothesis
of an increasing trend in proportions is given by
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Ho: k=O vs. H1: t>O

Following the development of Tarone (8) and Hoel
(10), we assume that po (denoted by p) is a random
variable following a beta distribution

g(p) = [(at + )p-lq-l/[p(a)f(3)]
with

q= 1 -p

with a and a known. We defined p = H(a) so that a is
distributed as

(1) Logistic response: Set H(a) = e"/( + e"), then
from Eq. (1) we have

r ,.
T,(ot,4) = Exidi - + a nidii=1 f+ a +1 ~1 (2)

(2) Exponential response: Set H(a) = 1 - e-", then

n^a , ot + 1 Er -r
Th(Ot4) = flx+da + 13n-d1

x + a - 1 i=I =

n + ot + i - 1
x + ox - 1

T,(ot - 143)

f(a) = [(a + 1)H(a)a-1[1-H(a)]O-lH'(a)I[F(ot)F(1)]

Since XO, X1, .. ., X,. are independent conditioned on
p, the joint distribution of a and X = (XO, Xl, *.., Xr)
is given by

f,(a,x) =

rI ()i H(a + kdi)ri[l - H(a + (di)]`-xif(a)i=o Xi

Thus the marginal distribution of X is

ft(x) = 7 f(a,x)da

In particular, the marginal distribution of XO is

ft(xo) = [(a + O)F(xo + a)F(no + xo- x)I
F{(a)F(13)F(nO + a + ,B)}

which is independent of t.

Unconditional Tests
The locally most powerful test (12) for Ho: = 0 vs.

H1: e > 0 is given by

T = d logft(x) _ ft'(x)
dt lk=o fo(x) I =0

After some simple calculation we find that

r(n + a + r)
TF(x + a)F(n +3 + x)f
r

- E njdiH(a) H(a)x+ -2[1 - H(a)]n+3-x-l[H'(a)]2da

(1)

which depends on the response function H. Two cases
are of particular interest:

Suppose that the response function is a distribution
function which is third-order differentiable, then apply-
ing the formula by Hald (13), we may show that

T= (n + ot + ,p)2 X + ot T
(x + oa)(n +1 - x) n + a + t

+ op(Vii)
where w(h) = H'[H- (h)] and Tt is the statistic given
in Eq. (2). Thus when T and Tt are appropriately nor-
malized, they have the same asymptotic distribution as
n -* oc; that is, T is asymptotically free of the shape of
the response function and is equivalent to Tt.

In order to obtain an asymptotic test based on Tt we
observe the following results which are straightforward
calculations. Under Ho: e = 0

E(X1) = niaI(a + 13) = niO

V(Xi) = njO(1 - 0)/(a + 13 + 1)

Cov(Xi, Xj) = ninjO(1 - 0)/(a + ,B + 1)

and it thus follows that

E(Tt) = 0

V(Td) = a3_nrd2(a + p)(a + 1 + 1) 2
- nd__ (1nidi)2
n + ot + =1t

When conditioned on p, the mean and variance of Tt
under Ho are

E(Tt p) = p( + ) - A nidi
I(Tt r p) / r

(n +2a +
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The test statistic T, could be standardized as

Sc = TtlV(Tt P)1/2
or as

S =Ttlv(Tt)12

with p and q replaced by their estimates p = (X/n) and
q = 1 - p or as Tarone did with

S= TT/((X + a)(n + i - [; d 2

(n+ ot = 1

r )2- 1/2

Of these standardizations, the first statistic S simply
uses the unconditional variance of the statistic T while
the second uses the estimated conditional variance. The
Tarone standardization results from treating the ran-
dom variable a as a parameter in the likelihood function
and using the score test of e = 0.

In considering the asymptotic distribution of the test
statistics S, Sc, St as n c we assume that Xi = ni/n

is kept constant (O < Xi < 1) for each i. The asymptotic
distributions are summarized as follows and the proofs
can be found or obtained following the arguments given
in Hoel and Yanagawa (7):

TARONE'S STANDARDIZATION. For either a + or
0 = a/(a + 1) fixed and '(t) the normal distribution,
then under Ho

lim pr{S, < x} = ¢D(x)

UNCONDITIONAL STANDARDIZATION. For at +
fixed then

lim pr{S < x} = E{F[xVWlpq(oT7+7T ]}
Ul-.

For + c, then

lim pr{S < x} = ¢D(x)

STANDARDIZATION BY CONDITIONAL VARIANCE

lim pr{S, < x} = ¢(x/Vk)

where

k - idi_- p(2 idi)2[Y.Aidi2_p(2 - p)(Ykidi)2]

where pn, = nI(n + a + 13) -+ p (O < p < 1) and Xi =

nijn is fixed.
The above results show that Tarone's standardization

is the best among the three, although the standardiza-
tion is not easy to justify. It is shown in Hoel and Yan-
agawa (7) that when 0 is small, n must be quite large
for the normality of the asymptotic tests to be a rea-
sonable approximation.

Exact Conditional Test
Since fo(x) is independent of i, we have that XO is an

ancillary statistic. Fisher (14) suggested that for pur-
poses of inference on should consider the family of con-
ditional distributions given the observed value of the
ancillary statistic in the sample. Denote byft(xlxO) the
conditional probability density function of X given XO
= XO. The conditional locally most powerful test for Ho:
(=0 vs. H1: t>0 is given by

T = [d log ft(x xo)Idk]t=o
and it is easy to show that T is given by Eq. (1).

In general, let to be the observed value of T; then the
exact p-value of the conditional test is given by

p-value =

E, (niA Rx + a)F(n + -x)F(no + a +)
ik=iX (xo + ot)F(no + 1o- x)F(n + a + 1

where the summation ' extends over all (x1,x2,
xr), which satisfy T < to for given XO = xo. For the
NTP data with r = 2, no = n1 = n2 = 50 and p ranging
from 1% to 20%, computations of the p-value by com-
puter is very quick.

Asymptotic Properties of the Exact
Conditional Tests
Hoel and Yanagawa (7) standardized the statistic T,

by means of the conditional expectation and variance
given XO and obtained the following statistic S:

S = Tt/{pL(l - U)[E nidi2 - + + (E nidi)2W/2
where 13

F = (xO + a)/(no + a + 1).

Following the development in Hoel and Yanagawa (7)
one may show that: (1) under the null hypothesis Ho, S
has limiting normal distribution with mean zero and
variance one as n --).xz. Thus the asymptotic conditional
size a test for increasing trend in proportion is given
by rejecting the hypothesis Ho if S - z,a,, where z,x is
the upper oa% point of the standard normal distribution.
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(2) For the sequence of alternative hypotheses H1l,: t,,
= &/In - the unconditional asymptotic power of the con-
ditional test S is the same as for S, which is given in
Theorem 2 of Hoel and Yanagawa (7). (3) The Pitman
asymptotic relative efficiency of the conditional test
with respect to the Cochran-Armitage test is

ARE(S SC-A) = [B(P)/B(1)]2

This efficiency formula can be used for assessing the
saving in sample size by incorporating historical con-
trols. Suppose that historical control data are incorpo-
rated with the current experiment which uses n total
animals. Then the formula implies that approximately
n' = n[B(p)/B(1)]2 animals are needed by the analysis
of the current experiment alone to achieve the same
statistical power as the incorporated analysis. For ex-
ample, the analysis of incorporating historical controls
of at + = 400 with the current experiment using d, = 1,
d2=2, and no=nj=n2=50 animals corresponds to the
analysis of no= n1 = n2 = 105 animals of current experi-
ment. In terms of the false negatives of statistical tests,
the use of this historical information decreases the false
negative rate from 0.51 to 0.24 when p = 0.01, Pi =

0.049, and P2 = 0.360 (see Table 2). This of course
assumes that + ,B as n c and that p =0 in the

limit. If this is not the case, the above finding is not
true. For example, in comparing the exact p-values of
the exact tests, Yanagawa, Hoel, and Brooks (6) show
that when 0 is large (0 = 0.2), at + is small (a + = 15)
and xJno is much smaller than 0; then the p-value of
the Hoel-Yanagawa conditional test for (xO,x1,x2) =

(2,2,9) is 0.048; whereas the corresponding p-value of
the exact trend test which does not incorporate histor-
ical control data is 0.0096. Generally, Hoel and Yana-
gawa (7) find that the Cochran-Armitage test gives
much higher p-values especially when xo is larger than
expected and smaller p-values when xo is smaller than
expected.

Comparisons with the Tarone Test
Suppose that the sample size n and p are moderately

large and that the distributions of both test statistics S
and St are approximated well by their asymptotic dis-
tributions. It would be reasonable to expect under the
alternative hypothesis of a positive dose-response that
the observed sample point (xo, x1, ... xr) falls in the
region R defined by

R = {XO0Xi,. ... ,Xr) xcx/no) (xJ/ni), i=1,2,.. . ,r}

Furthermore assume that xi/ni < 1/2, i = 0, 1, . .., ,
which is the case in many animal carcinogenicity ex-
periments. Then it may be shown for (xo,x1, ., Xr) E

R that S is larger than the square root of Tarone's test
statistic. This indicates for a moderate sample size that
the asymptotic conditional test would have higher
power than the Tarone test.

Generally, as stated above for animal experiments
where n is small, the asymptotic approximation of the
trend tests is not good, especially when 0 is very small
and a + 13 is large. This is the situation where a good
gain in power by incorporating historical control data
is anticipated. Therefore, the exact conditional test is
suggested rather than asymptotic test.

Finally, we note one weak point of the Tarone test,
as well as the test by the other authors. Suppose that
no = ni = n2 = 50, 0 = 0.01 and (ao, 13) = (3.95, 3.91),
and that (xO,x1,x2) = (3,3,3) is observed, then the p-
value of the Tarone test is 0.007. Thus a strong evidence
of positive dose-response is shown. This is because we
have pr[xo03] = 0.02. This illustrates the necessity of
dealing with exceptional values of xo which happen
sometimes by the reasons discussed in the next section.
Since the existence of sound historical control database
has been presumed for our statistical procedures, one
should not attempt to incorporate the historical data
when the exceptional value of xo is observed. We en-
courage the use of the ancillary information, i.e. xo, in
the conditional procedure to check the quality of current
experiment.

Historical Control Database
Problems encountered in the historical control data

are discussed by Haseman, Huff, and Boorman (11).
Examining the NCI/NTP historical data carefully, these
authors find that different terminologies are often used
to describe the same tumor even for studies at the same
laboratory carried out at approximately the same time.
Also the use of different sets of criteria for diagnosing
a lesion is revealed. Discussing the criteria that will aid
in determining whether a particular study should be
included in the database, Haseman, Huff, and Boorman
(11) state "Certainly species, strain, sex, study dura-
tion, pathology protocols, nomenclature conventions,
quality assurance and review procedures should be the
same for each study in a particular control database.
Ideally, diets, changing regiments, and various envi-
ronmental parameters should also be comparable. Dif-
ferent types of control groups (e.g., untreated, corn oil
gavage) should be dealt with separately. Other potential
sources of variability (calendar year, laboratory, pa-
thologist, supplier) should also be investigated, identi-
fied and controlled." The current database thus estab-
lished in the NTP contains information beginning with
those studies reported in Technical Report 193, 1981
through those studies whose pathology diagnoses were
finalized in Carcinogenesis Bioassay Data System as of
March, 1983. Most control groups have 50 animals/spe-
cies/sex and all are from studies of two years duration.
About 50 control groups/species/sex are contained in the
database.
We fitted beta-binomial distribution to the data for

each tumor type in the database. Table 3 shows for
selected tumor sites in the Fisher 344 rat the estimates
of the beta-binomial parameters a and 13, a + 1, and
o = a/(a + 1), and their standard deviations. These es-
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Table 3. Carcinogenesis data system: maximum likelihood estimates of beta-binomial parameters in F344 rats.a

Male Female
0 a a cx+1 0 a a a + a

Respiratory system
Lung nos.

Alveolar/bronchiolar
adenoma

Alveolar/bronchiolar
carcinoma

Total incidence/animals
Hematopoietic system

All lymphomas
All leukemias

Total incidence/animals
Circulatory system

Hemangioma
Hemangiosarcoma
Angioma
Angiosarcoma

Total incidence/animals
Digestive system

Liver nos.
Hepatocellular adenoma
Neoplastic nodule
Hepatocellular carcinoma

Total incidence/animals
Endocrine system

Thyroid/thyroid follicle
C-cell adenoma
C-cell carcinoma

Total incidence/animals
Endocrine system
Adrenal: nos./capsule/

cortex/medulla
Pheochromocytoma
Pheochrocytoma, malignant

Total incidence/animals
Reproductive system

Mammary gland
Adenoma, nos.
Papillary adenoma
Cystadenoma, nos.
Papillary cystadenoma, nos.
Intraductal papilloma
Acinar-cell adenoma
Fibroma
Fibroadenoma

0.023 14.7 626.0 641.0
(0.003)b (50.9) (2170.5) (2221.3)

53/2305
0.302
(0.015)

699/2320
0.007
(0.002)

16/2320
0.042
(0.006)

96/2306
0.089
(0.007)

196/2230
0.180
(0.013)

409/2280
0.022
(0.003)

9.0
(3.0)

*

20.9 29.9
(7.1) (10.1)

0.011
(0.002)

27/2354
0.189
(0.010)

2.8 242.3 245.1
(3.2) (284.1) (287.3)

15.7 67.5 83.3
(8.8) (38.1) (45.9)

448/2370
0.002
(0.001)

2.5 58.0
(1.3) (29.9)

60.5
(3.1)

8.1 83.5 91.6
(4.9) (51.0) (55.8)

6.6
(1.9)

*

25.4 31.0
(8.7) (10.6)

5/2320
0.031
(0.005)

74/2356
0.084
(0.007)

1.8 55.0 56.8
(1.0) (30.8) (31.7)

10.1 110.7 120.8
(7.6) (83.7) (91.2)

189/2265
0.039
(0.004)

92/2338
0.238
(0.014)

6.3
(2.0)

20.1
(6.6)

26.4
(8.6)

Total incidence/animals
Urinary system

Kidney nos.
Adenoma, Nos.
Tubular-cell adenoma
Papillary cystadenoma, nos.
Adenocarcinoma, nos.
Tubular-cell adenocarcinoma

Total incidence/animals
Endocrine system

Pancreatic islet
Islet-cell adenoma
Islet-cell carcinoma

Total incidence/animals

52/2320
0.003
(°O.l0)b

564/2370
0.002
(0.001)

6/2307
0.058 15.1 245.3 260.4
(0.005) (21.5) (349.8) (371.3)

4/2359
0.010
(0.003)

0.8 74.1 74.9
(0.6) (57.2) (57.7)

129/2226
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Table 3. (contd).

Male Female

0 a 1 a+ 0 a a

Endocrine system 0.017 3.0 167.1 170.1 0.008 *
Thyroid/thyroid follicle (0.003) (3.1) (178.4) (181.5) (0.002)

Follicular-cell adenoma
Cystadenoma, nos.
Papillary cystadenoma, nos.
Papillary carcinoma
Adenocarcinoma, nos.
Papillary adenocarcinoma
Follicular-cell carcinoma
Papillary cystadenocarcinoma,

nos.
Total incidence/animals 39/2230 19/2265

aThe asterisk (*) shows that a beta-binomial distribution did not fit to the data.
b Standard deviation.

timates are obtained by the method of maximum like- seen in Table 3, the standard deviations of the estimated
lihood. The asterisk (*) in the table represents tumor a and , are fairly large. There is the need to consider
sites whose data did not fit well to a beta-binomial dis- the effect of this source of variability.
tribution. It is estimated that there are a little more Yanagawa, Hoel, and Brooks (6) studied its effect on
than 1/3 of such in the database. In most of these, data the p-value ofthe conditional test for a logistic response.
variations between experiments are rather smaller than They show that it changes only slightly with a small
that of a binomial distribution. Methods for incorporat- change in a + ,B; that when a + ,B is small the p-value
ing these historical control data are not yet developed. is not sensitive to a change in 0; whereas when a + 13
Figures are given in Yanagawa, Hoel, and Brooks (6) is large, slight changes in 0 produce substantial changes
to show visually the goodness-of-fit of beta-binomial dis- in the p-value, and in particular, when the difference of
tributions to several selected tumor sites. 0 and xolno is large.

Developing methods for constructing the 95% confi-
dence intervals of 0 and a + 1, Yanagawa, Hoel, and

Sensitivity Brooks (6) considered the maximum and minimum of p-tyvalues over the space made by the cartesian product of
The exact conditional tests developed in the preceding these confidence intervals (see the shaded area in Figure

sections depend on beta-binomial parameters, a and ,B, 1). They found numerically that these maxima and min-
which are estimated from historical control data. As ima seem to be attained always at the four corner points,

Table 4. The p-value at the points A, B, C, D, and 0.

p-value
Tumor (X.,X1,X2) 0 A B C D
Thyroid/thyroid folliclea 0 0 4 0.016 0.003 0.009 0.004 0.041

(a,*) = (2.98,167.46) 0 1 4 0.010 0.003 0.008 0.002 0.026
(0, a+ 1) 0 2 3 0.023 0.006 0.016 0.005 0.056

1 0 4 0.033 0.040 0.057 0.004 0.045
1 1 4 0.022 0.036 0.052 0.002 0.029

0: (0.017 170.4) 1 2 4 0.015 0.031 0.044 0.001 0.017
A: (0.11, 21.7) 2 0 5 0.020 0.056 0.072 0.001 0.013
B: (0.024, 21.7) 2 2 4 0.028 0.027 0.064 0.013 0.040
C: (0.011, 1445.1) 2 3 4 0.018 0.020 0.050 0.008 0.026
D: (0.024, 1334.1) 3 4 5 0.008 0.089 0.108 0.002 0.009

Hematopoietic systemb 4 4 15 0.029 0.013 0.040 0.017 0.055
(a,) = (15.8,67.62) 4 8 14 0.029 0.014 0.042 0.017 0.053

(0, a +1) 4 12 14 0.015 0.005 0.011 0.010 0.055
8 4 17 0.034 0.018 0.049 0.020 0.058

0: (0.189, 83.4) 8 8 16 0.034 0.020 0.050 0.020 0.056
A: (0.169, 27.7) 8 12 15 0.033 0.030 0.048 0.011 0.056
B: (0.209, 27.7) 12 12 18 0.022 0.039 0.059 0.003 0.018
C: (0.169, 251.1) 12 12 17 0.021 0.048 0.072 0.010 0.032
D: (0.209, 251.1) 16 16 21 0.008 0.036 0.054 0.000 0.002

aIncludes follicular-cell adenoma; cystadenoma, nos; papillary cystadenoma, nos; papillary carcinoma; adenocarcinoma, nos; papillary aden-
ocarcinoma; follicular-cell carcinoma; papillary cystadenocarcinoma, nos.

b Includes all lymphomas and leukemias.

223



224 YANAGAWA AND HOEL

C D

Interal of. . . . . . . . . . ...

95% Confidence
Interval of
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i.e., A, B, C, and D in Figure 1. Table 4 shows p-values
at A, B, C, and D, and at the point 0 of estimated a
and S3 for several configurations of (x0,x1,x2) for tumors
of the thyroid and tumors of the hematopoietic system
using as usual n0 = =1-n = 50.

Conservative Use of the Conditional
Test
The inspection of Table 4 leads to the following con-

servative rule for incorporating historical control data
by the exact conditional test for testing positive dose-
response:

(Ri) Compute p-values at the five points A, B, C, D,
and 0.

(R2) Do not attempt to draw any inference when the
maximum p-value of these five points exceeds the nom-
inal level, e.g., 0.01 or 0.05.

This rule is very conservative, but it still works well
in practice, especially for tumors with small sponta-
neous background rates. This is shown by comparing

the maximum p-value with the p-value of the exact
trend test, i.e., extended version of Fisher's exact test
which does not incorporate historical data. For example,
when (a', = (3.95,391) and (xO,xl,x2) = (1,2,3), then
the maximum p-value is 0.020; whereas the p-value of
the exact test is 0.226. The rule also works for many
configurations of (xo,x1,x) even when 0 is large (0= 0.2);
for example, when (a,O = (3,12) and (x0,x1,x2) =
(21,25,29), then the maximum p-value is 0.018 and the
p-value of the exact test is 0.067. Note that the com-
puting time required to obtain the p-values at the five
points is rather short: for example, when (&,,B) =
(3.95,391) a VAX 780 took less than 40 sec to compute
the p-values for (xO,xl,x2) = (1,2,3).
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